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Abstract. A general error correction method is presented which is capable of correcting coherent errors
originating from static residual inter-qubit couplings in a quantum computer. It is based on a random-
ization of static imperfections in a many-qubit system by the repeated application of Pauli operators
which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates
coherent errors produced by static imperfections and increases significantly the maximum time over which
realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy
so that all physical qubits involved can be used for logical purposes.

PACS. 03.67.Lx Quantum computation – 03.67.Pp Quantum error correction and other methods for
protection against decoherence – 05.45.Mt Quantum chaos; semiclassical methods

Current developments in quantum physics demonstrate in
an impressive way its technological potential [1]. In quan-
tum computation, e.g., characteristic quantum phenom-
ena, such as interference and entanglement, are exploited
for solving computational tasks more efficiently than by
classical means [2–6]. However, these quantum phenom-
ena are affected easily by unknown residual inter-qubit
couplings or by interactions with an uncontrolled environ-
ment [7]. In order to protect quantum algorithms against
such undesired influences powerful methods of error cor-
rection have been developed over the last years.

So far techniques of quantum error correction have
concentrated predominantly on decoherence caused by un-
controlled couplings to environments [8,9]. In these cases
appropriate syndrome measurements and recovery oper-
ations can reverse errors. However, up to now much less
is known about the correction of coherent, unitary errors.
Even if a quantum information processor (QIP) is iso-
lated entirely from its environment and if all quantum
gates are performed perfectly, there may still be residual
inter-qubit couplings affecting its performance. Recently,
it was demonstrated that static imperfections, i.e. random
inter-qubit couplings which remain unchanged during a
quantum computation, restrict the computational capa-
bilities of a many-qubit QIP significantly as they cause
quantum chaos and quantum phase transitions [10]. Fur-
thermore, in addition to a usual exponential decay such
static imperfections also cause a Gaussian decrease of the
fidelity with time. At sufficiently long times this Gaussian
decrease dominates the decay of the fidelity thus limiting
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significantly the maximum reliable computation times of
many-qubit QIPs [11,12].

In this paper a general error correcting method is
presented for overcoming these disastrous consequences
of static imperfections. It is based on the repeated ran-
dom application of Pauli operators to all the qubits of
a QIP. The resulting random changes of the compu-
tational basis together with appropriate compensating
changes of the quantum gates slow down the rapid Gaus-
sian decay of the fidelity and change it to a linear-in-time
exponential one. As a result this Pauli-Random-Error-
Correction (PAREC)-method increases significantly the
maximum time scale of reliable quantum computation.
In addition, neither control measurements nor redundant
qubits are required so that all physical qubits are logical
qubits.

In order to put the problem into perspective let us
concentrate on the quantum algorithm of the quantum
tent-map as a particular example [12]. One iteration of
this special case of a quantum-rotator-map is governed by
the unitary operator

Û = e−iT p̂2/(2m�)e−ikV (x̂)/�. (1)

It describes the one-dimensional dynamics of a periodi-
cally kicked particle of mass m. The operators p̂ and x̂
denote momentum and position operators and T is the
period of the kicks of magnitude kV (x). The dynamics of
the particle is assumed to be confined to the spatial in-
terval 0 ≤ x ≤ l with periodic boundary conditions. The
name of this quantum-map originates from the force which
resembles the form of a tent, i.e.

−V ′(x) =
{

(x− l/4), (0 ≤ x < l/2)
(3l/4 − x), (l/2 ≤ x < l). (2)
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Due to the periodic boundary conditions the momentum
eigenvalues are given by pn = 2π�n/l with n ∈ Z. Impos-
ing the ‘resonance condition’ T = [m(l/2π)2/�](2π/N)
with N ∈ N implies the symmetry 〈pn+N |Û |pn′+N 〉 =
(−1)N 〈pn|Û |pn′〉 and Û decomposes into a direct sum
of N × N matrices [13]. Thus, for a given value of
N the dynamics of the quantum tent-map can be sim-
ulated on a quantum computer (QC) with nq qubits
provided N = 2nq . In this case the unitary opera-
tion of equation (1) can be performed with the help of
ng = (9/2)n2

q − (11/2)nq + 4 universal quantum gates,
i.e. Hadamard-, phase-, controlled-phase-, and controlled-
not gates [12]. The classical limit of the quantum tent-
map corresponds to T → 0, k → ∞ with K =
kT [l/(2π�)]/[m(l/2π)2/�] remaining constant. In this
parameter regime the tent-map exhibits all complex dy-
namical features characteristic for quantum chaos [14].

In order to model static imperfections we assume
that the nq qubits of a realistic QC are coupled by ran-
dom Heisenberg-type nearest-neighbour interactions as
described by the Hamiltonian

Ĥ =
nq−1∑
i=0

δiẐi +
nq−2∑
i=0

Ji(X̂iX̂i+1 + ŶiŶi+1 + ẐiẐi+1) (3)

with the Pauli (spin) operators X̂, Ŷ , Ẑ. The quantities
δi and Ji denote the strengths of the detuning and of
the nearest-neighbour interaction of qubit i. In the case
of static imperfections these quantities are distributed
randomly and homogeneously in the energy-interval
[−√

3η,
√

3η] and remain static in time during a quantum
computation.

In general, after t iterations of a quantum map the fi-
delity, defined through the ideal and the perturbed quan-
tum states |ψ(t)〉 and |ψη(t)〉, i.e. f = |〈ψ(t)|ψη(t)〉|2, de-
cays according to [12]

−lnf(t) =
t

tc
+

t2

tctH
. (4)

This relation is valid as long as η and t are sufficiently
small so that the fidelity f remains close to unity. The
time scale tc governing the linear-in-time exponential de-
cay is determined by Fermi’s Golden rule. In particular, in
recent simulations [12] it was found to be inversely propor-
tional to (nqn

2
gη

2). The second characteristic time scale
entering equation (4) is the Heisenberg time tH ≈ 2nq

which is determined by the dimension of the nq-qubit
Hilbert space. According to equation (4) the linear-in-
time exponential decay changes to the much more rapid
quadratic Gaussian decay roughly after t ≈ tH iterations.
Such quadratic-in-time Gaussian decays are characteristic
for coherent dephasing phenomena. The quadratic fidelity
decrease of equation (4) is drastically limiting the max-
imum time over which a quantum computation can be
performed reliably. Contrary to static imperfections, ran-
dom imperfections which change from gate to gate, e.g.,
lead to a purely linear-in-time exponential decay of the fi-
delity [12]. This suggests the idea that a randomization of

static imperfections might help to slow down the time evo-
lution of the fidelity from a quadratic-in-time exponential
decay to a linear-in-time one thus increasing the reliable
computation time significantly.

But how can a randomization of static imperfections
be achieved efficiently? A basic idea of quantum error cor-
rection is to exploit the freedom of choice of the compu-
tational basis for an appropriate encoding. This idea can
also be used for an efficient randomization of static imper-
fections by changing the computational basis repeatedly
and randomly during a quantum computation. However,
to leave the quantum algorithm unchanged these basis
changes have to be compensated by appropriate trans-
formations of the universal quantum gates.

In order to address this issue let us concentrate on the
particular example of the quantum tent-map algorithm
and on the static Heisenberg-type imperfections described
by equation (3). A convenient way of realizing such ran-
dom changes of the computational basis is to apply re-
peatedly randomly selected Pauli operators to all the nq

qubits of the QC. For this purpose it is advantageous to
represent the elementary quantum gates of the quantum
algorithm in terms of a special Hamiltonian set of univer-
sal quantum gates, namely

Ŝ±Xj (∆φ) = e∓iX̂j∆φ, Ŝ±Zj (∆φ) = e∓iẐj∆φ,

Ŝ±XkXj (∆φ) = e∓iX̂kX̂j∆φ. (5)

The Hamiltonians appearing in the exponents of equa-
tion (5) are themselves Pauli operators. Therefore, any
unitary transformation R̂ originating from Pauli opera-
tors either leaves these Hamiltonians invariant or changes
their signs, such as

R̂jŜ±Xj (∆φ)R̂j =

{
Ŝ±Xj (∆φ) if R̂j ∈ {1j , X̂j}
Ŝ∓Xj (∆φ) if R̂j ∈ {Ŷj, Ẑj}.

(6)

Thus, with the help of these Hamiltonian quantum gates
any change of the computational basis originating from
a randomly selected set of Pauli operators can be com-
pensated by an appropriate permutation of the universal
quantum gates of equation (5).

On the basis of these considerations during a quan-
tum computation an efficient correction of static errors can
be achieved by the PAREC-method in the following way
(compare with Fig. 1). In the first step randomly selected
unitary operations from the set {1, X̂, Ŷ , Ẑ} are applied
to all nq qubits of the QC, say (X̂1, Ŷ2, ...,1nq). The infor-
mation about which qubit has been transformed by which
Pauli operator is stored in a classical memory. In the sec-
ond step one starts the quantum computation by applying
a sequence of properly permuted universal quantum gates
(compare with Eqs. (5) and (6)) as described by the first
dashed box of Figure 1. This simple permutation does
not require any extra significant computational effort. In
the third step a second sequence of Pauli operators is se-
lected randomly, say (Ẑ1, Ŷ2, ..., X̂nq), and the combined
quantum gates (X̂1Ẑ1, Ŷ2Ŷ2, ...,1nqX̂nq) are applied to all
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Fig. 1. The basic idea of the PAREC-method: the two boxes
(full lines) represent two sequences of universal quantum gates
for nq = 4 qubits. Two random sequences of Pauli operators
(X̂1, Ŷ2, Ẑ3,14) and (Ŷ1, X̂2, X̂3, Ẑ4) are also indicated. The
unitary Pauli operators outside the dashed boxes (full lines)
are applied to the qubits whereas the ones inside the dashed
boxes (dashed lines) are taken into account by appropriate per-
mutations of the elementary quantum gates. Due to the iden-
tities X̂2 = Ŷ 2 = Ẑ2 = 1 the inserted random sequences of
Pauli operators change the computational basis but leave the
ideal quantum algorithm unchanged.

the nq qubits of the QC. These combined quantum gates
are again Pauli operators. The information about the spin
operators of the second selection is again stored in a clas-
sical memory. Afterwards the second sequence of properly
permuted universal quantum gates is performed (second
dashed box of Fig. 1). In the subsequent stages of the
PAREC-method these steps are repeated after sequences
of universal quantum gates of appropriate lengths ngef .
The influence of the choice of ngef on the error correc-
tion will be discussed later (compare with Fig. 3). Finally,
after the application of the last quantum gate the last
randomly selected sequence of Pauli operators is applied
to all qubits. As apparent from Figure 1 this PAREC-
method leaves the ideal quantum algorithm unchanged.
However, the repeatedly applied random unitary transfor-
mations produced by the Pauli operators change the signs
of the parameters δi and Ji of equation (3) thus causing a
randomization of the static errors. As a result we expect
a significant improvement of the fidelity decay.

The stabilizing properties of the PAREC-method are
investigated numerically in Figures 2 and 3 where it is
applied to the iterative quantum tent-map. For this pur-
pose the unitary operator of equation (1) is decomposed
into a sequence of ñg universal quantum gates of the form
of equation (5). This can be achieved in a straightfor-
ward way, e.g., by corresponding replacements of the al-
ready known gate decomposition into ng gates [12]. The
PAREC-randomization is applied after appropriately cho-
sen sequences of ngef quantum gates of this latter decom-
position of ng gates. The influence of static imperfections
is modeled by assuming that these universal quantum
gates are performed instantaneously but that there is a
certain time delay between any two successive quantum
gates during which static imperfections cause errors. This
time delay ∆t models in an approximate way the time
required for readjustments of the control unit of the QC
before it can control the next quantum gate. As the quan-
tum gates of equation (5) involve different accumulated
phases ∆φ, within our model we also assume that quan-
tum gates with larger phases require longer readjustment-
times. Correspondingly, the readjustment-times ∆t1 and

Fig. 2. Quantum Poincaré sections with Husimi-functions at
t = 3000 in scaled momentum and position variables ỹ =
p[(l/(2π�)] ∈ [0, 2π] and x̃ = x[2π/l] ∈ [0, 2π]: the parame-
ters are K = 1.7 and nq = 10. The initially prepared coherent
states are centered around (π/4, 0) (left panel) and (5.35, 0)
(right panel). First row: ideal dynamics; second row: static im-
perfections with ε = 5 × 10−6; third row: PAREC-method ap-
plied after each sequence of ngef = 20 universal quantum gates
of reference [12]. The probability density is coded in colors
(red/maximum, blue/zero).
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Fig. 3. Dependence of the fidelity f(t) on the number of itera-
tions: parameters as in the left panel of Figure 2; left: static im-
perfections without error correction, PAREC after each map it-
eration, after each ngef = 50, and after each ngef = 20 quantum
gates (from bottom up); right: static imperfections without er-
ror correction, with PAREC after each map iteration and after
each sequence of ngef = 20 quantum gates (full curves), best
fits for linear- and quadratic-in-time decays (dashed curves).
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∆t2 after two successive quantum gates with accumulated
phases ∆φ1 and ∆φ2 are related by ∆t2/∆t1 = ∆φ2/∆φ1.
Thus, for a typical sequence of two quantum gates, e.g.,
the influence of static imperfections is modeled by

· · · [e−i(Ĥ∆t/�)(∆φn+1/π)SXiXj (∆φn+1)]

[e−i(Ĥ∆t/�)(∆φn/π)SXk
(∆φn)] · · · (7)

with ∆t denoting the readjustment-time associated with a
phase change |∆φ| = π. Correspondingly, the parameters
characterizing the average strength of the influence of the
static imperfections between successive quantum gates are
(δi∆t/�) and (Ji∆t/�) which are selected randomly and
uniformly from the interval [−√

3ε,
√

3ε] and which remain
constant during the quantum computation.

The ideal dynamics of the quantum tent-map is il-
lustrated in the first row of Figure 2 where its Husimi-
functions [13] are plotted after t = 3000 iterations for two
initially prepared coherent states located close to the clas-
sically unstable (left) and to the classically stable (right)
fixed points. In the left figure of the first row the initially
prepared coherent state spreads almost uniformly over the
classically chaotic component of phase space. Classically
inaccessible regions originating from Kolmogorov-Arnold-
Moser-tori are also apparent. The quantum probability
leaking into these regions by quantum tunneling is still
negligibly small. In the right figure of the first row the
quantum probability is still concentrated in the region
of the initially prepared coherent state. This reflects the
approximately regular classical dynamics in this part of
phase space. Static imperfections modify these dynami-
cal characteristics significantly, as is apparent from the
second row of Figure 2. Most prominently the influence of
quantum tunneling into the classically inaccessible regions
of phase space is no longer negligibly small. Furthermore,
the detailed structures in both the regular and the chaotic
parts of phase space are modified significantly. The cor-
responding results of the PAREC-method are depicted in
the third row. Despite the fact that random sequences of
Pauli operators are applied only after each sequence of
ngef = 20 gates of reference [12] the corrected quantum
states resemble the ideal case very closely.

The quantitative dependence of the fidelity on the
number of iterations of the quantum tent-map is depicted
in Figure 3 for the same parameters as in the left panel
of Figure 2. The initially prepared coherent state of the
right panel of Figure 2 yields similar results. It is apparent
that the PAREC-method changes the fidelity decay from
quadratic- to linear-in-time, i.e. ln f(t) = −t/tc. Thus, the
time over which quantum computations can be performed
reliably is increased significantly. In addition, one also no-
tices that with increasing numbers of random unitary op-
erations the decay rate 1/tc also decreases. In particular,
the best fits to the PAREC-results of Figure 3 together
with further numerical studies suggest a dependence of
the form 1/tc = aε2nqngngef as long as 1 	 ngef 	 ng.
Thereby, ngef is the effective number of original gates of
reference [12] over which the influence of static imperfec-
tions adds up coherently. Our numerical data of Figure 3

give a 
 1. Physically speaking this dependence is plau-
sible on the basis of the following heuristic consideration.
If the PAREC-method is repeated after each map itera-
tion, one observes ngef = ng as coherence is destroyed by
the random basis changes and by the chaotic dynamics
after each iteration. This result is consistent with numeri-
cal studies [12]. In the extreme opposite case in which the
PAREC-method is repeated already after each universal
quantum gate one expects ngef = 1 as coherence is de-
stroyed by random basis changes already after each gate
operation. The above mentioned dependence interpolates
linearly between these two extreme cases. However, due to
fluctuations it is expected that these considerations only
apply for sufficiently large values of ngef .

In summary, a general method for the correction of
unitary static inter-qubit errors has been presented. This
PAREC-method is particularly well suited to stabilize
many-qubit systems against the disastrous effects of static
imperfections in arbitrary quantum algorithms. In con-
trast to conventional quantum error correcting methods
which exploit redundancy the PAREC-method does not
require any extra qubits so that all physical qubits can be
used in an optimal way.
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